Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Contents

Regular Papers

SEVIER

Hongyan Wang, Yaoming Xie, R. Bruce King, Henry F. Schaefer III

J. Organomet. Chem. 693 (2008) 3201

Formal chromium–chromium triple bonds and bent rings in the binuclear cycloheptatrienylchromium carbonyls $(C_7H_7)_2Cr_2$ - $(CO)_n$ (n = 6, 5, 4, 3, 2, 1, 0): A density functional theory study The structures and energetics of $(C_7H_7)_2$ - $Cr_2(CO)_n$ (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Most of the predicted $(C_7H_7)_2Cr_2(CO)_n$ structures have bent trihapto or pentahapto C_7H_7 rings and $Cr\equiv Cr$ distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C_7H_7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed.

Stefan Köcher, Bernhard Walfort, Gerd Rheinwald, Tobias Rüffer, Heinrich Lang

J. Organomet. Chem. 693 (2008) 3213

Alkyloxy- and aryloxy-titanocenes: Synthesis, solid-state structure and cyclic voltammetric studies The synthesis and reactivity of diverse alkyloxy- and aryloxy-titanocene chlorides, bis(aryloxy) titanocenes, $([Ti]Cl)_2(\mu$ -OC₆-H₄O) and $([Ti](Cl)(\mu$ -OC₆H₄-4))₂ is described. The structures of six samples in the solid state are reported. The electrochemical behavior of these molecules is discussed.

Ambroz Almássy, Zuzana Benková, Branislav Horváth, Andrej Boháč

J. Organomet. Chem. 693 (2008) 3223

Fluxional behavior of methyl-substituted tricarbonyl(tropone)iron complexes and their different reactivity

The influence of methyl substituents on the site preference of $Fe(CO)_3$ group in neutral, cationic *C*-protonized and *O*-trimethylsily-lated tricarbonyliron complexes of (di)-methyltropones was investigated and the related differences in the reactivity of these complexes in nucleophilic additions and [3+2] cycloaddition reactions were explained.

In-Sook Lee, Young-Woo Kwak, Dong-Ha Kim, Yong Cho, Joji Ohshita

J. Organomet. Chem. 693 (2008) 3233

Synthesis of *E*-alkenylsilanes with dithienosilole and their electrochemical and optical properties

The synthesis, optical, and electrochemical properties of novel silylene-spaced dithienosilole derivatives (**3–10**) by hydrosilylation of various terminal alkynes with 2,6bis(dimethylsilyl)-4,4-diphenyldithienosilole (**2**) in the presence of platinum(0) catalyst are described.

Alejandro Capapé, Ming-Dong Zhou, Shu-Liang Zang, Fritz E. Kühn

J. Organomet. Chem. 693 (2008) 3240

((2-Hydroxynapthalen-1-yl)methylene)aniline derived Schiff base adducts of MTO: Synthesis and catalytic application ((2-Hydroxynapthalen-1-yl)methylene)aniline derived Schiff base adducts of MTO are synthesized. The catalytic activity depends largely on the substituents of the Schiff base ligand, despite the comparatively weak coordination of this ligand.

Leslie A. Lesikar, Audra F. Gushwa, Anne F. Richards

J. Organomet. Chem. 693 (2008) 3245

Synthesis, characterization, and steric hindrance comparisons of selected transition and main group metal β -ketoiminato complexes

The coordination preference of the ketoiminato ligand, $RN(H)(C(Me))_2C(Me)=0$, (R = 2,6-diisopropylphenyl, (Dipp)), L¹, and RN(H)(C(Me)CHC(Me)=0, R = C₂H₄-NEt₂, L², have been investigated with a range of d and p block metal halides, (or alkyls).

Xue-Hong Wei, Peter B. Hitchcock, Michael F. Lappert

J. Organomet. Chem. 693 (2008) 3256

Synthesis and structures of the 2-(dimethylsila)pyrimidine derivatives $[Si(Me)_2NC(Ar)C(H)C(Ar)NX]_n$ (Ar = Ph, C₆H₄Bu'-4; X = H, SiMe₃, Li(hmpa)₂, K(thf)₃; n = 1, 2)

Five 2-(dimethylsila)pyrimidine derivatives $[Si(Me)_2NC(Ar)C(H)C(Ar)NX]_n$ (1)–(5) have been prepared and characterized:

Ar	Х	n
Ph	SiMe ₃	1
C ₆ H ₄ Bu ^t -4	K(thf) ₃	2
C ₆ H ₄ Bu ^t -4	Н	1
$C_6H_4Bu^t-4$	SiMe ₃	1
C ₆ H ₄ Bu ^t -4	Li(hmpa) ₂	1
	Ar Ph $C_6H_4Bu^{t}-4$ $C_6H_4Bu^{t}-4$ $C_6H_4Bu^{t}-4$ $C_6H_4Bu^{t}-4$	Ar X Ph SiMe ₃ $C_6H_4Bu^t$ -4 K(thf) ₃ $C_6H_4Bu^t$ -4 H $C_6H_4Bu^t$ -4 SiMe ₃ $C_6H_4Bu^t$ -4 Li(hmpa) ₂

Louis R. Pignotti, Natcharee Kongprakaiwoot, William W. Brennessel, Jonas Baltrusaitis, Rudy L. Luck, Eugenijus Urnezius

J. Organomet. Chem. 693 (2008) 3263

1,4-Bis(phosphine)-2,5-difluoro-3,6-dihydroxybenzenes and their P-oxides: Syntheses, structures, ligating and electronic properties *p*-Hydroquinones appended with phosphine substituents can be conveniently prepared via low-temperature syntheses involving the generation of organodilithio intermediates. The compounds serve as effective binucleating ligands towards selected metal sources, or as starting materials for other ligands built on *p*-hydroquinone platform.

Chao Chen, Huayu Qiu, Wanzhi Chen, Daqi Wang

J. Organomet. Chem. 693 (2008) 3273

Structural variations in nickel, palladium, and platinum complexes containing pyrimidyl *N*-heterocyclic carbene ligand Nickel(II), palladium(II), and platinum(II) complexes of 2-(3-mesitylimidazolylide-nyl)pyrimidine have been prepared and structurally characterized.

Moutusi Dasgupta, Haregewine Tadesse, Alexander J. Blake, Samaresh Bhattacharya

J. Organomet. Chem. 693 (2008) 3281

Interaction of *N*-(aryl)picolinamides with iridium. N–H and C–H bond activations

Reaction of N-(aryl)picolinamides with $[Ir(PPh_3)_3CI]$ in refluxing ethanol in the presence of a base (NEt₃) affords two yellow complexes (**1-R** and **2-R**). Similar reaction of N-(naphthyl)picolinamide with $[Ir(PPh_3)_3CI]$ affords two organometallic complexes, **3** and **4**.

Mengtao Ma, Sumod A. Pullarkat, Yongxin Li, Pak-Hing Leung

J. Organomet. Chem. 693 (2008) 3289

Asymmetric synthesis of a chiral heterobidentate As–P ligand containing both As and P-stereogenic centres The organopalladium complex containing ortho-metalated (*S*)-[1-(dimethylamino)-ethyl]naphthalene as the chiral auxiliary promoted the asymmetric cycloaddition reaction between phenyldivinylphosphine and 3,4-dimethyl-1-phenylarsole yielding the optically pure As^*-P^* heterobidentate ligand. An interesting arsenic elimination reaction was also observed in the arsanorbornene skeleton.

Xia Li, Wei Liu, Hong-Yun Zhang, Ben-Lai Wu

J. Organomet. Chem. 693 (2008) 3295

Novel coordination polymers with ferrocene-containing dicarboxylate ligand: Syntheses, crystal structures and properties

Self-assembly of a new ferrocene-containing dicarboxylate ligand L (L = 5-ferrocene-1,3-benzenedicarboxylic acid), M(II) salts (M = Co and Zn) and chelating ligands dpa or phen (dpa = 2,2'-dipyridylamine and phen = 1,10-phen) gave rise to four new coordination

Kuang-Hway Yih, Gene-Hsiang Lee

J. Organomet. Chem. 693 (2008) 3303

Synthesis, fluxional behavior, and *endo*, *exo*-stereoisomers of allyl molybdenum complexes with O-ethyldithiocarbonate, EtOCS₂⁻, containing ligand: Crystal structures of $[Mo(CH_3CN)(\eta^3-C_3H_5)-(CO)_2(S_2COEt)]$, *exo*- $[Mo(dppm)(\eta^3-C_3H_5)-(CO)(S_2COEt)]$, and *endo*-, *exo*- $[Mo(dppa)-(\eta^3-C_3H_5)(CO)(S_2COEt)]$ polymers 1–4. The isostructural complexes 1 and 2 possess 1D helical chain structures with 2_1 screw axes along the *b*-direction, and the right- and left-handed helical chains are alternate arrayed into 2D layer structures through hydrogen-bonding interactions; while isostructural complexes 3 and 4 are 1D linear chain structures with phen and ferrocene groups of L as pendants hanging on the different sides of the main chain. A structural comparison of complexes 1–4 demonstrated that the characteristics of subsidiary ligands and slight difference in coordination models of L play very important role in the construction of the complexes.

The reactions of the very air-sensitive η^3 allyldicarbonylethoxyldithiocarbonato molybdenum(II) compound [Mo(η^3 -C₃H₅)-(CO)₂(η^2 -S₂COEt)(CH₃CN)] (1) with piperidine, pyrrolidyldithiocarbamate, bipyridine and diphos ligands have been discussed. X-ray analysis on [Mo(η^3 -C₃H₅)(η^2 -S₂COEt)(CO)(η^2 -dppa)] (8) shows that the unit cell contains two independent molecules, *endo* and *exo*, which differ mainly by the orientation of the allyl group with respect to the carbonyl group.

Full text of this journal is available, on-line from ScienceDirect. Visit www.sciencedirect.com for more information.

Contents